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ABSTRACT 

Minera Los Pelambres (MLP) is an open pit mine and processing operation located 200 km north of 

Santiago in Chile. The processing plant treats 175000 tonnes per day producing both copper and 

molybdenum concentrates. The comminution circuit consists of two primary crushers followed by 

three Semi-Autogenous Grinding (SAG) mill - ball mill - pebble crusher (SABC) grinding circuits. A 

fourth line will be installed in the future. 

The MLP drill core database is very comprehensive and detailed for geometallurgical mapping 

purposes. MLP has developed an empirical throughput forecast model using this database, and the 

model parameters are ore hardness (JKMRC breakage Axb parameter calculated from SMC test 

results), SAG mill feed 80 % passing size in mm (F80), and the proportion of hard ore in the blend. 

The model has been refined over an extended period of time, resulting in mean relative errors of only 

3.5 % and 3.2 % on a monthly and annual basis, respectively. Nevertheless, MLP wished to improve 

the accuracy of the model, particularly over the longer term, thereby further enhancing production 

forecast and planning for the Life-of-Mine (LOM). 

In late 2021, Hatch was engaged to review MLP’s modelling, ore domain definition, ore 

characterization (rock strength and structure), and blast fragmentation measurements. Current plant 

operation was also reviewed, the comminution circuit was analyzed, and a new power-based 

throughput forecast model was developed. To provide a better description of the SAG mill feed size 

distribution (coarse and fine material in the feed), both F80 and content of fines (% passing 10 mm) 

were included in the model. The new model resulted in a mean relative error of 3.0 % and 1.4 % on 

monthly and annual basis, respectively, and is more responsive to variations in ore and operating 

conditions than the previous model. Other opportunities were also identified that would allow 

further improvements in the accuracy of the model as well as circuit optimization. 

  



 

INTRODUCTION 

Comminution circuit models can be used to estimate throughput considering changes in ore 

characteristics, mine planning, blending strategies, and operating conditions. Accurate models can 

assist to improve process stability and maximize profit over the LOM. MLP has developed, and 

refined over the years, a very good empirical throughput model, leveraging the comprehensive 

geometallurgical mapping of the orebody. It considers the main variables influencing grinding circuit 

throughput: ore hardness and feed size. A detailed review of the current model was conducted by 

Hatch and a few opportunities to improve its accuracy were identified. 

A new power-based throughput forecast model was developed for the MLP comminution circuit. 

This modelling methodology is presented in detail by Farmer et al., 2021, and Brennan et al., 2022. 

Basically, it estimates the specific comminution energy for each geometallurgical domain. The circuit 

specific energy is calculated by a weighted average of the specific energy using the proportion of each 

domain in the feed over a certain period of time (day, week, month, and year). The circuit throughput 

is then calculated for a given mill power draw. The last three years of production data (in the mine 

and plant) were analyzed and used for model calibration and a separate, more recent period, was 

used to validate model estimates and its accuracy. 

METHODOLOGY 

Geometallurgical Domain Definition and Drill Core Testing Database 

The MLP drill core testing database is very large and is a world class example of detailed 

geometallurgical mapping of ore hardness for block modelling. There are 2264 SMC Test® results in 

the database which provides a very high resolution of the breakage properties/hardness within the 

ore body. The geometallurgical domains (called M units) were defined and populated into the block 

model along with the SMC test results. Previously published simulations (Caceres et al., 2015) 

demonstrated that the accuracy of the Axb hardness parameter values populated in the block model 

are very good.   

Previous Power-Based Throughput Models developed by MLP 

MLP developed and tested different power-based throughput forecast models previously. One 

described by Misle et al. (2013) was quite accurate at the time; however, it was complex and onerous 

in terms of data input requirements. Another subsequent model used the Morrell method for total 

comminution specific energy (Morrell, 2009) but introduced additional parameters related to the ball 

mill circuit which had limited benefit in improving accuracy due to the circuit being SAG mill limited.  

Existing Empirical Throughput Forecast Model 



 
The MLP throughput forecast model in use at the time of the review was an empirical relationship 

that assumes the circuit is SAG mill limited and the throughput is a function of ore hardness (Axb 

parameter), F80, and proportion of hard ore in the blend.  

The original version of this throughput forecast model was presented by Muñoz et al. (2017). It has 

since been further refined and updated by MLP. The principles of the empirical equations were 

explained in this paper along with the various adjustments that are accounted for in the model, such 

as: the effect of recirculating pebbles to the SAG or ball mill, the effect of stockpile level on F80, and 

the effect of SAG speed ramp up after mill reline. The main underlying model equation is as follows: 

𝑇𝑃𝐻 =  𝐴𝑟 + 𝐵𝑟. (𝐴 × 𝑏) + 𝐶𝑟. (
1

𝐹80
)                                   (1) 

Where Ar, Br, and Cr are fitted parameters and the model also requires the SAG mill F80. Predicting 

the SAG mill F80 for the ore characteristics and blend properties to be processed in the future is one 

of the main challenges for throughput forecast modelling. 

The MLP SAG F80 model is updated every year. It uses a weighted average calculated from the 

proportion of each M unit and the F80 of each M unit. The F80 of each M unit is determined by 

regression using the WipFrag online fragmentation analysis camera data for the previous year. The 

WipFrag accuracy and reliability has been assessed by MLP and the WipFrag F80 can be used with 

confidence, as explained by Muñoz et al. (2017). Whilst the F80 values for each M unit are re-fitted 

every year, these values reflect the past ore characteristics, not those of future ores. 

The SAG F80 modelling is one of the main limitations of the MLP empirical throughput forecast 

model and one of the main causes of discrepancy with actual throughput values. SAG feed size has 

a very significant impact on throughput. The very high quality and density of ore characterization 

data at MLP provided scope to improve the SAG F80 model and subsequently the ability of the 

throughput forecast model to predict changes due to future ore characteristics. This would also 

eliminate the need to refit (calibrate) the F80 of each M unit each year. Additionally, using only the 

F80 as a measure of SAG feed size does not consider the impact of the amount of fine material 

(% - 10 mm) in the feed, which also strongly influences SAG mill throughput (Kanchibotla, Valery & 

Morrell, 1999, Valery et al, 1999, Valery, Duffy & Jankovic, 2019). Both these limitations are addressed 

in the new throughput forecast model discussed in the following section. 

New Throughput Forecast Model 

To overcome the limitations of the empirical model, a power-based model was developed which uses 

Drop Weight index (DWi) for ore hardness and includes both F80 and % -10 mm to account for both 

the coarse material and fines in the SAG feed. The MLP circuit is SAG mill limited; therefore, a model 

based on SAG mill specific energy only, rather than total specific energy, is more accurate in this case.  



 
To ensure model accuracy, high quality input data is required. DWi is an appropriate measure of 

hardness for SAG milling, can be averaged (unlike Axb which is non-additive), and is estimated from 

the comprehensive SMC Test® work already conducted at MLP.  Accurate models to predict feed size 

parameters (F80 and % -10 mm) considering future ore characteristics are also required to ensure 

reliability of the throughput forecast model over time.  

Therefore, a new mechanistic model was developed for the SAG F80 based on ore properties and the 

crusher gap: 

𝐹80 = 𝑂𝑆𝑆𝐾 + ∑ (𝑘𝑗 ∗ 𝐷𝑊𝑖𝑗 + 𝑓𝑗 ∗ 𝑅𝑄𝐷) ∗ %𝑏𝑙𝑒𝑛𝑑𝑗𝑗                                    (2) 

DWi and Rock Quality Designation (RQD) ore properties were determined to be significant 

contributors to the F80 of the SAG feed and are incorporated in the new SAG F80 model. K, kj, fj are 

constants that are specific to MLP (fitted to the F80 data). This mechanistic model should improve 

accuracy of the F80 prediction compared to the previous model (which was based on past 

regressions) and eliminate the need to regularly refit the SAG F80 model. 

The percentage of fines (-10 mm) in the SAG feed also has a strong influence on SAG mill throughput 

(Valery et al, 2001). However, this is generally not accounted for in throughput forecast models due 

to challenges in predicting the amount of fines in the SAG feed. The fines are mostly influenced by 

drill and blast operations (predominantly blast intensity or powder factor) and ore hardness 

(Kanchibotla, Valery & Morrell, 1999, Valery et al, 2001, Valery, Duffy & Jankovic, 2019). Therefore, 

blast modelling and simulations were conducted to establish relationships to predict the percent 

of - 10 mm in the Run-of-Mine (ROM).  

A mechanistic blast fragmentation model specific to the conditions for MLP was calibrated and 

validated. This model predicts the full ROM size distribution based on drill and blast design and ore 

characteristics. Simulations were conducted with varying powder factors (by changing blast design) 

and hardness (Unconfined Compressive Strength (UCS)), see example in Figure 1. 

 

Figure 1 Example of establishing relationships between powder factor, hardness, and % -10 mm 



 
These simulations were used to establish a relationship between powder factor, hardness, and the 

% -10 mm in the ROM for each M unit using the following equation structure: 

% − 10𝑚𝑚 𝑅𝑂𝑀 =  𝐴 ∗ (𝑃𝐹) − 𝐵 ∗ (𝑈𝐶𝑆) + 𝐶                                           (3) 

Where A, B, and C are fitted parameters and vary for each M unit.  

The additional fines produced during crushing are accounted for (based on calibration with previous 

JKSimMet modelling) to determine the % -10 mm in the SAG Feed: 

% − 10𝑚𝑚 𝑆𝐴𝐺 𝑓𝑒𝑒𝑑 =  𝑅 ∗ (% − 10𝑚𝑚 𝑅𝑂𝑀) + 𝐹                              (4) 

Where R and F are constants that are specific to MLP (fitted to the modelling data). 

This inclusion of fines content in the throughput forecast model increases the accuracy of the model 

and enables additional utility of the model as a planning tool. It has greater reliability in predicting 

changes that will result due to future changes in ore characteristics and the ability to determine the 

impact of changes in blasting practices. 

To incorporate all the above, the new power-based throughput forecast model carries out a series of 

calculations: 

1. Estimate the weighted average hardness DWi for the period based on feed blend 

proportions. The DWi of each M unit for each period is an output of the block model. 

2. Estimate the SAG F80 for each M unit. The SAG F80 is estimated using the new mechanistic 

F80 model (Equation 2).   

3. Estimate the % -10 mm in the SAG feed: 

a. Calculate the proportion of -10 mm in ROM for each M unit according to the 

correlation equations determined from drill and blast simulations (Equation 3). 

b. Calculate the proportion of -10 mm in the SAG feed for each M unit (Equation 4). 

c. Calculate the amount of -10 mm in the SAG feed based on proportions of M units 

(weighted average). 

4. Calculate the SAG mill Specific Energy (kWh/t) based on the weighted average DWi, SAG 

F80, and % - 10 mm: 

𝑆𝐴𝐺 𝐸𝑐𝑠 = 𝑄 × 𝐷𝑊𝑖𝛼 × (𝑆𝐴𝐺 𝐹80 )𝛽 ×
1

(%−10𝑚𝑚)𝛿                                 (5) 

Where Q, α, β, and δ are constants that are specific to MLP (fitted to the plant data). 

5. Calculate the average throughput of the three production lines based on the predicted SAG 

Specific Energy and available power: 

𝑡

ℎ
=

𝑆𝐴𝐺 𝑃𝑜𝑤𝑒𝑟 (𝑘𝑊)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐸𝑛𝑒𝑟𝑔𝑦 (𝑘𝑊ℎ/𝑡)
                                                           (6) 

6. Calculate the yearly capacity from Usability (Availability x Utilization) rate U: 



 

𝐹𝑒𝑒𝑑 𝑡𝑜 𝑀𝑖𝑙𝑙𝑠 (𝑀𝑡𝑝𝑎) =
𝑡

ℎ
× 8760 × 𝑈                                                 (7) 

RESULTS AND DISCUSSION 

The accuracy of the previous empirical MLP throughput forecast model was already very good, in 

part due to the excellent ore characterization data and classification. The new power-based model 

achieves a similar accuracy on a daily basis but is improved on weekly and monthly bases (see Figure 

2 and Table 1). In particular, the accuracy over the longer term is greatly improved (1.4 % error on 

yearly basis). This is one of the highest accuracies in throughput forecast modelling compared to 

many operations globally and is a great benefit for long term strategic and LOM planning and 

optimization. 

Some of the improvement in model accuracy, particularly over the long term, is contributed to by the 

mechanistic model for SAG F80 which factors in the feed ore characteristics and therefore is more 

responsive to ore changes. This also eliminates the need to frequently recalibrate the F80 model. The 

inclusion of fines content (% -10 mm) in the SAG feed also contributes to the improved model 

accuracy. This considers the impact of both ore characteristics and drill and blast conditions on the 

proportion of fines in the feed which has a significant impact on SAG mill throughput. 

 

 

Figure 2  SAG F80 model and Throughput Model Validation – Monthly Basis 

Table 1 Comparison of previous and updated TPH Model Accuracies 

Model Daily Weekly Monthly 

Previous empirical MLP throughput model  6.0% 5.0% 3.5% 

Updated Power-Based model with mechanistic F80 Model 6.2% 4.5% 3.0% 

 



 
During the development of the new throughput forecast model, opportunities for further 

improvement were also identified. In particular, the ore hardness is highly variable and the compact 

in-situ rock structure (high RQD) in most of the ores is likely affecting fragmentation. Therefore, there 

is scope to further improve ROM fragmentation by optimizing the blast designs according to the 

properties of the rock mass (structure and strength). This may help to alleviate SAG mill constraints 

and make greater use of the available power in all ball mills which are not currently fully utilized. 

CONCLUSION 

The ore characterization and geometallurgical domain definition at MLP is very comprehensive 

which is of vital importance for accurate throughput forecast modelling. Consequently, the existing 

empirical model had good accuracy in the short term. However, due to the regression approach used 

for predicting SAG feed size, the model was not responsive to future changes in ore characteristics. 

Therefore, leveraging the high-quality ore characterization data, Hatch developed a new power-

based throughput forecast model that used a mechanistic model to determine SAG F80 and also 

incorporates the proportion of fines (-10 mm) in the SAG feed (which also strongly influence SAG 

throughput). This new model has greater accuracy over the medium and long-term, thus enhancing 

the production forecast and planning for the Life-of-Mine (LOM). 
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